Evidence of nonspecific surface interactions between laser-polarized xenon and myoglobin in solution.
نویسندگان
چکیده
The high sensitivity of the magnetic resonance properties of xenon to its local chemical environment and the large (129)Xe NMR signals attainable through optical pumping have motivated the use of xenon as a probe of macromolecular structure and dynamics. In the present work, we report evidence for nonspecific interactions between xenon and the exterior of myoglobin in aqueous solution, in addition to a previously reported internal binding interaction. (129)Xe chemical shift measurements in denatured myoglobin solutions and under native conditions with varying xenon concentrations confirm the presence of nonspecific interactions. Titration data are modeled quantitatively with treatment of the nonspecific interactions as weak binding sites. Using laser-polarized xenon to measure (129)Xe spin-lattice relaxation times (T(1)), we observed a shorter T(1) in the presence of 1 mM denatured apomyoglobin in 6 M deuterated urea (T(1) = 59 +/- 1 s) compared with that in 6 M deuterated urea alone (T(1) = 291 +/- 2 s), suggesting that nonspecific xenon-protein interactions can enhance (129)Xe relaxation. An even shorter T(1) was measured in 1 mM apomyoglobin in D(2)O (T(1) = 15 +/- 0.3 s), compared with that in D(2)O alone (T(1) = 506 +/- 5 s). This difference in relaxation efficiency likely results from couplings between laser-polarized xenon and protons in the binding cavity of apomyoglobin that may permit the transfer of polarization between these nuclei via the nuclear Overhauser effect.
منابع مشابه
Development of a functionalized xenon biosensor.
NMR-based biosensors that utilize laser-polarized xenon offer potential advantages beyond current sensing technologies. These advantages include the capacity to simultaneously detect multiple analytes, the applicability to in vivo spectroscopy and imaging, and the possibility of "remote" amplified detection. Here, we present a detailed NMR characterization of the binding of a biotin-derivatized...
متن کاملCharacterization of the effects of nonspecific xenon-protein interactions on (129)Xe chemical shifts in aqueous solution: further development of xenon as a biomolecular probe.
The sensitivity of (129)Xe chemical shifts to weak nonspecific xenon-protein interactions has suggested the use of xenon to probe biomolecular structure and interactions. The realization of this potential necessitates a further understanding of how different macromolecular properties influence the (129)Xe chemical shift in aqueous solution. Toward this goal, we have acquired (129)Xe NMR spectra...
متن کاملThe 308-nm xenon chloride excimer laser in combination with topical calcipotriol in the treatment of vitiligo
Background: Treatment of vitiligo remains an attractive topic and several therapies with varying degrees of success have been used. The aim of this study was to find out whether the combination of topical calcipotriol and excimer laser increases the efficacy of therapy compared to excimer laser alone. Methods: Twenty eight patients in two groups were treated with 308nm excimer laser alone (14 p...
متن کاملMeasuring surface-area-to-volume ratios in soft porous materials using laser-polarized xenon interphase exchange NMR
We demonstrate a minimally invasive nuclear magnetic resonance (NMR) technique that enables determination of the surface-area-to-volume ratio (S/V ) of soft porous materials from measurements of the diffusive exchange of laser-polarized Xe between gas in the pore space and Xe dissolved in the solid phase. We apply this NMR technique to porous polymer samples and find approximate agreement with ...
متن کاملResolution of (129)Xe chemical shifts at ultralow magnetic field.
In high-field nuclear magnetic resonance (NMR) spectroscopy, the sensitivity of the xenon chemical shift to its environment1 has been exploited to study porosity and surface interactions in materials2, as well as to probe xenon interactions with molecules3 and proteins4 in solution. In recent years, polarization enhancement through optical pumping5 techniques has further advanced the utility of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 97 17 شماره
صفحات -
تاریخ انتشار 2000